GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-IV (OLD) EXAMINATION – WINTER 2021Subject Code:140001Date:31/12/2021Subject Name:Mathematics-IVTotal Marks: 70Time:10:30 AM TO 01:30 PMTotal Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) Prove that
$$\sinh^{-1} x = log\{x + \sqrt{x^2 + 1}\}$$
.
(b) Solve the following system of equation by Gaussian elimination method
with partial pivoting $2x_1 + 2x_2 + x_3 = 6$; $4x_1 + 2x_2 + 3x_3 = 4$;
 $x_1 + x_2 + x_3 = 0$
Q.2 (a) Find the bilinear transformations which maps the points 1 1, ∞ onto the
points $1 + i$, $1 - i$, 1 respectively. Also, find its fixed points
(b) Evaluate $\int_C \frac{dx}{z^2 - 7z + 12}$, where *C* is the circle $|z| = 3.5$.
OR
(c) Evaluate $\int_C z dz$, where *C* is along the sides of the triangle having
vertices $z = 0, 1, i$.
Q.3 (a) Find and graph all sixth roots of unity
(b) Using the residue theorem, evaluate $\int_C \frac{z^2 + x}{z^3 - z} dz$, where *C*: $|z| = \frac{\pi}{2}$
OR
Q.3 (a) Find the analysic function $f(z) = u + iv$, if $u - v = e^x(\cos y - \sin y)$.
(b) Expand $\frac{1}{2^{(2-3y+2)}}$ about $z = 0$, for the regions (i) $1 < |z| < 2$
(ii) $|z| > 2$.
Q.4 (a) Apply fourth order Runge-kutta method to find $y(0.2)$ given
 $\frac{dy}{dx} = x + y, y(0) = 1$. (Taking $h = 0.1$)
(b) State Trapezoidal rule with $n = 10$ and using it, evaluate $\int_0^1 2e^x dx$
OR
Q.4 (a) Explain bisection method for solution of equation using this method find
the approximate solution of $x^3 - x + 1 = 0$ correct up to three decimal
points.
(b) Evaluate $\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$ with $h=0.2$ by simpson's $1/3^{rd}$ and
 $3/8^{th}$ rule.

Download all NOTES and PAPERS at StudentSuvidha.com

Q.5 (a) Find a real root of $xe^x = 2$, correct up three decimal places, by using 07 Newton-raphson method

(b)	Using Langr	age's interpo	lation formu	la obtain the	value of x fo	or $y = 85$
	X	2	5	8	14	

Y	94.8	97.9	81.3	68.7				
OR								

- Q.5 (a) Solve the following system of equations using Gauss seidel method: 07 5x + y - z = 10; 2x + 4y + z = 14; x + y + 8z = 20
 - (b) Compute f (9.2) from the following value Newton's divided difference 07 formula.

X	8.0	9.0	9.5	11
F(x)	2.079442	2.197225	2.251292	2.397895

07